Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl (O-B)-5-(difluoroboryloxy)tricyclo[4.3.1.1 ${ }^{3,8}$]undecane-4-carboxylate

Gyula Argay, ${ }^{\text {a }}$ Alajos Kálmán, ${ }^{\text {a* }}$ Gábor Bernáth ${ }^{\mathbf{b}}$ and Zsuzsanna Cs. Gyarmati ${ }^{\text {b }}$

${ }^{\text {a }}$ Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, PO Box 17, H-1525 Budapest 114, Hungary, and
${ }^{\mathbf{b}}$ Research Group for Heterocyclic Chemistry, Hungarian Academy of Sciences and University of Szeged, and Institute of Pharmaceutical Chemistry, University of Szeged, PO Box 121, H-6701 Szeged, Hungary

Correspondence e-mail: akalman@chemres.hu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.049$
$w R$ factor $=0.170$
Data-to-parameter ratio $=32.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BF}_{2} \mathrm{O}_{3}$, can be described as a resonance hybrid. The entering BF_{2} moiety interacts with the $\mathrm{C}=\mathrm{O}$ (oxo) groups of the parent compound, 5-(ethoxy-carbonyl)adamantan-4-one, generating two conjugated double bonds in the six-membered difluorodioxoborane ring. In spite of the conjugation between the multiple bonds, the tetrahedral configuration of the B atom gives rise to a non-planar conformation of the six-membered ring, which assumes a state intermediate between the boat and sofa forms.

Comment

For the synthesis of homoadamantane-fused pyridopyrimidinones (Cs. Gyarmati et al., 2003), 5-(ethoxycarbonyl)-homoadamantan-4-one, (1), or the title difluoroborate complex (2) of the latter was used as the key compound, the complex being prepared in the reaction of adamantan-2-one and ethyl diazoacetate in the presence of boron trifluoride diethyl etherate (see scheme).

We have found that (2) is much more stable than the boron complexes of other β-ketocarboxylates (Lin et al., 1995; Mock \& Hartman, 1970). In the present work, the structure of ethyl ($O-B$)-5-(difluoroboryloxy)tricyclo[4.3.1.1 ${ }^{3,8}$]undecane-4carboxylate, (2), has been established by X-ray diffraction. The structure determination of (2) confirms the ring closure between the oxo groups. Both $\mathrm{B}-\mathrm{O}$ bonds $[1.464$ (1) and 1.510 (2) \AA A are covalent and associated with $\mathrm{C}-\mathrm{O}$ multiple bonds $[1.312$ (1) and 1.278 (1) \AA]. In accordance with the 'diene'-type $p \pi-p \pi$ conjugation, the $\mathrm{C}-\mathrm{C}$ bonds $[1.411$ (1) and 1.372 (1) \AA] also have multiple-bond character. The exocyclic ethoxy group may account for the asymmetry of the $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{B}$ bond pairs. Presumably for similar reasons, in the majority of the 14 structures containing difluorodioxoborane rings that are archived in the Cambridge Structural Database (release of April 2003; Allen, 2002); namely CAMLUX10 (Jones et al., 1990), CUQWEQ (Balasubramanian et al., 2000), FIZGAW (Boeyens et al., 1987), HAHHUT (Morris et al., 1993), HATTAX (Stomberg et al., 1994), KONWOZ (Stomberg \& Lindquist, 1991), LIYHEG (Görlitz et al., 1999), MIXXEW (Schiemenz \& Näther, 2002) and NOLDOH (Dromzee et al., 1997), the pairs of bond

Received 29 July 2003

Accepted 18 September 2003
Online 24 September 2003

A perspective view of the title molecule, with displacement ellipsoids drawn at the 30% probability level. Only non-H atoms are labelled.
lengths also display differences. In contrast, in five structures these differences are within experimental error. In particular, VEJNUT [2,2-difluoro-4,6-dimethyl-5-(4'-nitrophenyl)-1,3,2dioxaborinane; Emsley et al., 1989] assumes almost perfect 'mirror' symmetry. The $\mathrm{BO}_{2} \mathrm{~F}_{2}$ moiety has a tetrahedral configuration, which results in a slightly puckered sixmembered ring. Its conformation is intermediate between the boat and sofa (envelope) conformations, with the B atom as the flap.

Experimental

The title complex, (2), was obtained as a by-product of the reaction between adamantan-2-one and ethyl diazoacetate in the presence of boron trifluoride diethyl etherate (Cs. Gyarmati et al., 2003) (m.p. 408-410 K).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BF}_{2} \mathrm{O}_{3}$
$M_{r}=284.10$
Triclinic, $P \overline{1}$
$a=7.169(1) \AA$
$b=8.049(1) \AA$
$c=11.858(1) \AA$
$\alpha=89.06(1)^{\circ} \AA$
$\beta=83.36(1)^{\circ}$
$\gamma=87.22(1)^{\circ}$
$V=678.82(14) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.390 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=18.0-18.9^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.50 \times 0.50 \times 0.45 \mathrm{~mm}
\end{aligned}
$$

Data collection
Enraf-Nonius CAD-4 diffractometer $\omega-\theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.936, T_{\text {max }}=0.951$
6462 measured reflections
5947 independent reflections
3332 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.170$
$S=1.10$
5947 reflections
182 parameters
Table 1
Selected geometric parameters (\AA).

C1-C9	$1.5205(18)$	C7-C8	$1.5270(17)$
C1-C10	$1.5275(19)$	C8-C9	$1.5181(17)$
C1-C2	$1.5295(18)$	C8-C11	$1.5351(16)$
C2-C3	$1.5321(16)$	C12-O2	$1.2784(12)$
C3-C4	$1.5154(13)$	C12-O3	$1.3065(12)$
C3-C11	$1.5295(17)$	C13-O3	$1.4701(13)$
C4-C5	$1.3723(13)$	C13-C14	$1.4643(19)$
C4-C12	$1.4111(13)$	O1-B1	$1.4638(14)$
C5-O1	$1.3118(12)$	O2-B1	$1.5104(15)$
C5-C6	$1.5014(13)$	B1-F2	$1.3606(16)$
C6-C10	$1.5370(18)$	B1-F1	$1.3618(15)$
C6-C7	$1.5387(16)$		

H atoms were placed geometrically in idealized positions, with $\mathrm{C}-$ $\mathrm{H}=0.96 \AA$ for methyl H atoms, $0.97 \AA$ for methylene H atoms and $0.98 \AA$ for all other H atoms. $U_{\text {iso }}$ values were set equal to $1.5 U_{\text {eq }}$ of the carrier atom (for methyl H atoms) and $1.3 U_{\text {eq }}$ for other H atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Balasubramanian, S., Ward, D. L. \& Nair, M. G. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 567-569.
Boeyens, J. C. A., Denner, L., Painter, S. \& Staskun, B. (1987). S. Afr. J. Chem. 40, 60-64.
Cs. Gyarmati, Zs., Csomós, P., Bernáth, G., Valtamo, P., Kivelä, H., Argay, Gy., Kálmán, A., Klika, K. D. \& Pihlaja, K. (2003). J. Heterocycl. Chem. Submitted.
Dromzee, Y., Kossanyi, J., Wintgens, V., Valat, P., Hartmann, H. \& Görlitz, G. (1997). Z. Kristallogr. 212, 372-376.

Emsley, J., Freeman, N. J., Bates, P. A. \& Hursthouse, M. B. (1989). J. Mol. Struct. 196, 249-255.
Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Görlitz, G., Hartmann, H., Nuber, B. \& Wolff, J. J. (1999). J. Prakt. Chem. Chem. Zeitung, 341, 167-172.
Harms, K. (1996). XCAD4. University of Marburg, Germany.
Jones, R. C. F., Begley, M. J., Peterson, G. E. \& Sumaria, S. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 1959-1968.
Lin, H. J., Wang, D. W., Kim. J. B. \& Browne, E. N. C. (1995). Can. J. Chem. 73, 1135-1147.
Mock, W. L. \& Hartman, M. E. (1970). J. Am. Chem. Soc. 92, 5767-5768.
Morris, J., Fang, Y., Wishka, D. G. \& Han, F. (1993). Tetrahedron Lett. 34, 38173820.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Schiemenz, G. P. \& Näther, C. (2002). Z. Naturforsch. Teil B, 57, 309-318.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stomberg, R., Li, S. \& Lundquist, K. (1994). Acta Cryst. C50, 214-217.
Stomberg, R. \& Lundquist, K. (1991). J. Crystallogr. Spectrosc. Res. 21, 701710.

